
VEVI: A Virtual Reality Tool For

Robotic Planetary Explorations

Laurent Piguet 1

Terry Fong z, Butler Hine, Phil Hontalas, Erik Nygren 2

NASA Ames Research Center

hztelligent Mechanisms Group
MS 269-3

Moffett Field, CA 94301

1. Abstract

The Virtual Environment Vehicle Interface (VEVI), devel-

oped by the NASA Ames Research Center's Intelligent

Mechanisms Group, is a modular operator interthce for

direct teleoperation and supervisory control of robotic vehi-
cles.

Virtual environments enable the efficient display and visual-

ization of complex data. This characteristic allows operators

to perceive and control complex systems in a natural fashion,

utilizing the highly-evolved human sensory system.

VEVI utilizes real-time, interactive, 3D graphics and posi-

tion / orientation sensors to produce a range of interface

modalities from the flat panel (windowed or stereoscopic)

screen displays to head mounted/head-tracking stereo dis-
plays. The interface provides generic video control capabil-

ity and has been used to control wheeled, legged, air bearing,

and underwater vehicles in a variety of different environ-
ments [1].

VEVI was designed and implemented to be modular, distrib-

uted and easily operated through long-distance communica-

tion links, using a communication paradigm called
SYNERGY.

2. Introduction

2.1 Background

Mission of the IMG

The objective of the Intelligent Mechanisms (IM) group is

the systems investigation of intelligent mechanisms. The

research is focused by the task of building intelligent mecha-
nisms, rather than being driven by a specific technological

1 Recom Technologies, Inc., San-Jose, CA.

2 Massachusetts Institute of Technology, Cambridge, MA.

bias. Pursuant to this focus we have concentrated on archi-

tectures for intelligent mechanisms, including software

architectures, advanced processors, sensor processing

(including vision, tactile, and proximity sensors) and user
interfaces [9].

Focus

The application focus of this group is driven by the relative
importance of this technology to NASA missions, in three

specific areas:

(1) construction and exploration tasks on planetary surfaces.

(2) low overhead operations for orbital missions.

(3) using undersea vehicles as analogs of space vehicles.

The products of the IM group are advancements in the ability

to accomplish a NASA mission.

Current Research

Crucial to the success of intelligent mechanisms is suitable

computational systems and methods for robustly evaluating
and handling faults. Additionally, operational needs in

unstructured or changing environments requires appropri-

ately constructed systems architectures incorporating multi-

ple sensor data, intelligent software and user interfacing. At
this time, therefore, our work is directed towards:

• Advanced computing incorporating high performance pro-

cessing and software architectures.

• Sensor processing using visual, tactile and proximity sen-
sors.

• User interfaces incorporating virtual environments and

telepresence.

• Systems integration of components into demonstrable

applications.

Facilities

The IM laboratory is located in the Automation Sciences

Research Facility (ASRF) at the NASA Ames Research Cen-

ter (ARC). This facility houses the Computational Sciences

NASAAmes- IntelligentMechanismsGroup 2

Division(CodeIC).
Themajorityof the Intelligent Mechanisms Group's research

is performed in the IM Laboratory at Ames Research Center.

Additionally, the group conducts collaborative work with

other ARC research groups and external organizations. The

IM group currently has access to manipulator arms, mobile

platforms, undersea vehicles, and high performance worksta-

tions running various user interface environments.

Computational Architecture

In [1], we have described the computational architecture

used to fulfill the requirements of our typical systems

(ARCA: Ames Robotic Computational Architecture).

In summary, the architecture provides solutions for the prob-
lems linked to different issues:

• Multiple data streams (sensory, command, knowledge)

from multiple sources.

• Need to deal with synchronous processing (common

clock, regular execution, strict execution schedule),

loosely-synchronous processing (similar to previous, but

without tight synchronization), and asynchronous process-

ing (event-driven or free-running processes without syn-
chronization).

• Multiple time delays (continuous to minutes).

• Application specific processor thoughput requirements

(0.5 MIPS - 500 GIPS).

• Synchronization of communications between multiple

modules (standardized communications).

The present paper describes an approach to the implementa-

tion of systems onto ARCA.

3. Design

3.1 Introduction

This paper describes the version 3.0 of VEVI. Previous ver-

sions have been used for a variety of tasks, though were

implemented on a case-to-case basis, with application-spe-

cific code. The primary motivation for the development of

VEVI 3.0 was to simplify the maintenance of application-

specific code, and also to provide a better platform for future

developments.

Past applications of VEVI include remote control of the fol-

lowing different systems:

• TROV (Telepresence Remotely Operated Vehicle) - an

underwater vehicle remotely controlled from California to
the Antarctic.

• MEL (Mobile Exploration Landrover) - our mobile rover,

operated and controlled locally.

• Dante was a walking mechanism developed by Carnegie

Mellon University, and remotely controlled from a site

local to the volcano it was exploring, with sites over the

country using VEVI to display telemetry information and

terrain maps.

• Marsokhod is a planetary rover prototype which has been

operated remotely in the Mohave desert, the Kamchatka

peninsula and in Moscow from California.

Based on those wide cases, we came up with a clear under-

standing of the requirements of most of the applications we

are developing.

3.2 Requirements

3.2.1. Distribution

In order to maintain a standardized base, from which exten-

sions may be developed, we desired that version 3.0 be eas-

ily customizable by end-users. At the same time, we wished

to maintain interoperability by restricting access to the

underlying structure. We therefore sought a design which

would allow flexible customizing without a requirement for
the kernel source code.

3.2.2. Flexibility

Based on the provided tools, a user must be able to interface

with VEVI using an easy but extensible interface. Instead of

provided access to the base tools, which would increase sys-

tem complexity, we decided to follow an alternate approach,

in which the user can extend the capability of the basic sys-

tem, to fulfill any specific need. With this approach, the sys-

tem remains simple but provides possibilities for further

implementations.

In a different case, the user might want to bypass the library

of provided tools and use his own. This is made possible as
an alternative.

Finally, in previous versions, modifications were made to the

software in order to adapt the system to different situations

and vehicles. The new approach provides with a way to
define the environment through configuration files, which

allows much better flexibility and turn-around time between

projects.

3.2.3. Modularity

In order to achieve the specified goal, it was necessary to uti-

lize a very modular approach. Modularity is attained by uti-

lizing an object oriented paradigm. Basically, every entity in
the environment is viewed as an "object". Object then can

interact and communicate through messages. This event-

driven approach provides us with a stateless system which

allows add-ons and removal of parts of the system without

destruction of the whole. Also, it allows separate develop-
ment of modules, which then can be added to the core and

provide additional capability, without touching the existing
base.

With this approach, a user can write an entire set of new

objects, which will extend the system with needed specific

functionality, without complicating the provided base capa-
bilities.

3.2.4. Standard communications

Since our system is articulated around ARCA [l], and

NASAAmes- IntelligentMechanismsGroup 3

includesawholesetof disparateplatformsandcomputing
architectures,whichcommunicatethroughabackbone,it is
clearthatweneededtostandardizesomewhatthecommuni-
cationprotocols.
Constraintslinkedtoremotelyoperatedvehicles(sometimes
onadifferentcontinent,orplanet),aswellasthecapability
to beascloseaspossibleof anexistingstandardmadeus
choosetodefinecommunicationtoolsbasedontheInternet
Protocol(IP)asourstandard.Sofar,wehaveusedthree
existingnetworkingtoolsbasedonanIPlayer:TCA[2;3],
TCX[4],TelRIP[5]andNDDS[6].

Althoughmostof ourpastmissionswereconductedusing
oneor moreof thosestandards,it clearlyshowedthatwe
needto havethecapabilityto adapttoa numberof those
tools.
Externalcollaborationforpastandfuturemissions,aswell
asconstraintslinkedtodataratesandbandwidthareadeter-
miningfactorforthechoiceofoneortheotherstandard.

3.2.5. Execution speed

Based on previous experience, it is necessary to maintain a
frame rate at the renderer's level that is greater than 10

frames per second (fps). At lower frame rates, the user expe-

riences significant loss of the immersion provided by Virtual
Environments.

To comply with such a tight constraint, especially on lower-

end platforms, the rendering node will contain as little "intel-

ligence", or application-specific data and algorithms as pos-

sible. Nodes hanging off the backbone (Internet) will be used
in the cases where such knowledge is required and will com-

municate directly with VEVI.

Also, a VEVI might not reach the necessary frame-rate

needed to efficiently process data sent at much higher rates.
For this reason, we decided that an external process, known

as CommTask, would be responsible for dealing with differ-

ent data flows, buffering and queuing of data. Also, Com-

mTask will be able to adjust the way it delivers messages,
based on directives from VEVI directly. For example, VEVI

might request CommTask to only send the most "urgent"

message, not to send messages regarding one object, or to
size down the number of messages made available at each

polling session.

3.2.6. Distributed environment

One of the group's goals is to develop technology which
allows scientists and the public to access missions sites and

data. Therefore, we want to have the possibility for people to
interface with vehicles, tools and data gathered using their

own low-cost platform at the office, or at home, throughout

the country.

We also want to be able to provide multiple people separated

with the possibility to interface and collaborate through mul-

tiple Virtual Environment with the remote vehicle.

3.2.7. Portability

In order to reach the previous goal, we need to have the pos-

sibility to run the software and the main rendering tool on PC

platforms, as well as high-end graphic machines.

Links with the backbone will be created through alternate

communication protocols (serial over a modem line, ISDN)

through a translator which will convert data to the communi-

cation protocol used on SYNERGY I.

3.2.8. Data types

Complex and mixed systems present two different kinds of
data that we need to be able to deal with:

• Streams: the data flows at any rate. Whomever is inter-

ested in it will obtain the latest update and process it.

Some updates may be lost, multiple updates may be

received between Iookups, the order is not important. Such

message do not queue up in case the lookup rate is lower

to the sending rate.

• Sequences: the data is sent out in a particular order, which
needs to be respected. Every message needs guaranteed

delivery, in the right order. In this case, buffering and

queuing become important issues, especially when the

provider outputs information at a much higher rate than
the consumer can process it. Sequences are typically

higher-level commands, and therefore aren't sent out at

very high rates over an average period of time, but the
need to process and store the information remains a prior-

ity to handle a higher rates than usually provided by
VEVI.

The CommTask previously mentioned will be used to pro-

cess the data and store it, independently of the frame rate of

the rendering node. It will then deliver the information,

based on its properties, as well as the requirements of VEVI,

on every request. With this approach, all VEVI will have to

do is simply collect whatever information is delivered,

knowing that it correspond to previously defined require-

ments. A great deal of computation is therefore avoided in

the rendering node, thus allowing better frame rate in the
Virtual Environment.

3.3 Summary

• Object-oriented approach

• Messages between objects

• Based on a IP backbone for communications

• Rendering at > 10 fps

• Configuration File

• CommTask for buffering and conversion between vehicle-

specific info and VEVI generic info, as well as dealing

with information delivery.

• Modules communicating and operating of the backbone

I. Logical representation of the system as a whole,

including the different nodes hanging off the back-

bone (see Fig. 1)

NASAAmes-IntelligentMechanismsGroup 4

4. Implementation

4.1 Introduction

Since SYNERGY is by definition an evolving architecture, it

is difficult to represent a general configuration. However, we

will in the next paragraphs refer to one fairly simple and

coherent application, with its proper configuration. SYN-

ERGY, however, can be extended and modified, and is not

limited to the example presented herein.

Several main elements can be found in any implementation

of SYNERGY:

• VEVIs (rendering nodes), or nodes which provide 3D

interactive graphics.

• CommTasks which take care of communications between

VEVIs and the rest of SYNERGY

• Special purpose nodes, which represent any particular

computing process (simulators, planners, etc.), generally
located on machines dedicated to those processes.

• Vehicle nodes, which are the symbolic representation of a

vehicle, seen from the rest of SYNERGY (through the on-

board controller).

Kinematics
Simulator

i

I DataStorage

r._

O

CommTask

Dynamics
Simulator

Path

Planner

RateTranslator

$
_ Ground

Station

_ Displays

VEVI
Renderer
Processes basic
I/O w/user.

I;PvU[ce s]

Vehicle

CommTask_
Serial 14.4Kbps

TaskRendering

Fig. 1."SYNERGY: overall communication layout.

VEVI
Renderer
Processes basic
I/O w/user.

NASAAmes- IntelligentMechanismsGroup 5

• Communications,tolinkallthenodes.
• Platforms.All nodescanrunondifferentplatforms.

4.2 VEVIs

4.2.1. Description

When referring to the overall system, we call VEVI a "ren-

dering node". Its main purpose is to give an interactive 3D

representation of a Virtual Environment to a user, through

multiple input and output devices.

Multiple VEVIs can exist at the same time in SYNERGY,

representing for each user chosen information. It is then pos-

sible to have several people share an environment and obtain
informations at the same time. Each user can focus on his

primary zone of attention, by acting on the sensors and com-

mands at his/her disposition.

It is important to understand that VEVI can be used as a sim-
ulation system, bringing recorded data into a realistic 3D
interactive universe with which the user can interact, or as a

"3D window" displaying the current state of multiple com-

plex systems as they operate in a remote environment. The
difference between those two situations is simply based on

the existence or not of real-time data sent from the systems

on SYNERGY.

4.2.2. Structure

VEVI follows an object-oriented approach. Within its main

VEVI

msg

C) object

CommTask
shm

IP Backbone

Fig. 2." VEVI & CommTask: objects, message flows

kernel, each entity of the world, represented or not in the Vir-
tual Environment, exists as an object loaded from a configu-

ration file.

Objects communicate between each other with messages,
which can contain data. All interactions between objects are

defined by message passing, creating a stateless system (see

Fig. 2).

4.2.3. VCF file format

Description
The VEVI Configuration File format was designed to allow

the full definition of objects present in the environment in a
file read at initialization. Advantages are the added flexibility

of being able to change this file, rather than modify the

source code and re-compile.

In order for this concept to be useful, the configuration lan-

guage must provide a structure that allows implementation

of any kind of data which might be useful for the description

of an object.

Configuration files are preprocessed using the standard C

preprocessor, and therefore allowing macro definition and

multiple file inclusion.

Structure

The file format contains tag names followed by arguments.

Each argument can either be a string containing data, or a

sublevel, surrounded by brackets "{ ... }".

The tag names at the upper-level always refer to objects.

Deeper levels are defined differently, depending on each

object.

Example
This example describes the vcf representation of a vehicle

with an on-board manipulator arm.

wtk_object { 1

name "theVehicle" 2

filename "theVehicleModel.nff" 3

scale 1.0 4

initpos { z -50.0} 5

attach_sensor "A_Sensor" 6

}

manipulator {

name "theArm"

raff_file "theArmD-Hdescription.raff" 7

scale 1.0

initpos {

frame "theVehicle" 8

x 75.0 y 6.0 z 0.0

ex -90.0 ez 180.0 9

}
father "theVehicle" i0

attach_sensor "Another_Sensor"

]

1. Type of object.

2. Name of this instance.

NASAAmes- IntelligentMechanismsGroup 6

3.Filethatcontainsthegeometricdata.
4.Scalingfactor.
5.Initialposition.If notmentioned,thereferenceframeis
theWorldframe.
6,Weattacha sensor,definedbythenameof thecreated
object.
7.Formanipulatorarms,filecontainingall theparameters
necessaryforitscreation.
8.In initpos,allowsthespecifyanyposewithrespecttothe
frameofanyotherdefinedobjectoftheenvironment.
9.Orientations can be specified as quaternions, or as fixed

(XYZ) angles (equivalent to Euler ZYX).

10. Establishes a hierarchy. The named object becomes the
father of the current one.

4.2.4. Objects

Definition

Each instance of an object is defined as a data structure. The

data of each object is private and can be accessed by the

object alone. It contains a private data area, which is defined

when creating the object library, and pointers to functions
used at creation, to handle messages, and to destroy the

object (see Fig. 3).

Creation

At creation time, the private data area is created, the vcf

entry containing the description of the object is processed

and initializations are performed.

Handlers

Handlers define the behavior of an object when receiving

messages. Upon receival of a message, the called object will

invoke its "handle" function, which will interpret the mes-

sage, its data, and generate predefined action. Finally, a sta-

tus message is send back to the originator.

Destruction

The destructor handles mainly memory issues, and clean-up
of any data used by the object.

Messages

Messages can contain complex data, that is processed upon
receipt. Each message is composed of an ID, and optionally
some data.

Message in this implementation are blocking, which means

object

create l[__handle][delete

private data structure

Fig. 3: Structure of an object

that the remaining processes will be executed only upon
receipt of execution of the message sent.

4.2.5. Examples

Here are some of the currently implemented objects:

"Function Groups"

In order to achieve a degree of loose synchronism, a particu-

lar object, called a "function group", had been implemented.

They have the capability of containing other objects, to

which they send predefined messages each time they are

themselves invoked. Function groups can loop.

"Graphical object"

Defines every 3D representation of objects in the universe.

Based on CAD description, those geometric objects have

multiple parameters that can be modified through messages

(position, orientation, color, scale, hierarchy, etc.). Complex

mechanisms can be created by assembling multiple objects

and assigning hierarchy relationships.

"Terrain"

Since most of our missions involve operation on a priori
unknown terrain, we felt a need for the creation of a terrain

object. Based on a height-field description of the terrain, we

can represent it in the environment.

Using sensory readings received from a vehicle, we are able

to create a terrain object which will represent exactly the

sensed terrain and provide an intuitive interface for the user

to analyze its features.

"Viewpoint"

Viewpoint objects represent cameras, through which the user

can look. Multiple viewpoints can be present within one
environment, assigned eventually to several windows. View-

points can have behaviors defined that lock them looking at a

particular object, or in a certain direction. Sensors can also

be attached to viewpoint to allow the user to "look-around"
interactively.

"Manipulator arm"

Other interesting feature, manipulator arm objects allow

construction and representation of complex serial manipula-
tor arms, based on a modified Denavit-Hartenberg definition

of their parameters [11,12], as well as models composing
each of their parts. Once a manipulator object is created, it is

possible to attach a sensor to it, and manipulate the arm's

end-effector intuitively, using a sensor.

A manipulator object can also receive an outside telemetry

stream which will make it represent the current joint configu-
ration of the arm aboard a vehicle.

"Keyboard"

A keyboard object links a key to an output message and des-

tination. As a user presses a key, the corresponding message

is send to its destination, triggering some action.

Keyboard mapping can be easily modified simply by chang-

ing the binding description in the VCF (VEVI Configuration
File) file.

NASAAmes-IntelligentMechanismsGroup 7

"Renderer"
Thisobject,whichismandatoryinmostcases,takescareof
theactualrenderingofthescene.Currently,allourworkhas
beendevelopedusingWoldToolKit,fromSense8Corp,Sau-
salito.However,it isimportanttonoticethatthis object can

be interchanged for any other renderer if the need was felt. In

particular, this might be an interesting approach for plat-

forms not supported by actual versions of WTK, or in the

case where this product is not available anymore.

"CommTask "

When VEVI is running in conjunction with complex systems

on SYNERGY, the CommTask object is mandatory. It is

responsible for the transactions between the CommTask pro-

cess, running as a separate process and VEVI. This object

pulls the information made available by the CommTask pro-

cess and updates the objects affected in the Virtual Environ-
ment.

In cases where VEVI is used to display a simulation of the

environment, without any interaction with the rest of SYN-

ERGY, CommTask is not necessary.

4.3 CommTask

The CommTask process is an important part of SYNERGY.

It was designed and implemented to respond to several
needs.

a) In complex systems with multiple producers of data, and

in the absence of tightly-synchronized processes, it is almost

impossible to avoid differences in data rates. This has for

consequence to create data accumulation and, if not pro-
cessed properly, dangerous queuing of information. This is

simply due to the fact that a consumer might not be able to

receive the data and dispose of it in time before a new update
arrives.

In our situation, the main consumer of data, VEVI (rendering

node), will typically be running at rates close to 10 Hz,

which would place us at risk of encountering a data accumu-

lation situation very easily.

b) Since a user might not always be able to run VEVI on a

machine with access to the IP backbone, it is necessary to

provide an interface process that will communicate between
them with alternate protocols. In most cases, we will use a

shared memory connection to transfer data, but we can also
use a serial connection.

c) We also don't want VEVI to worry about sorting through

the masses of messages circulating to find out which ones are

interesting to the user. A separate process, dedicated to this

task can therefore take care of this task. Also, it will permit

to define the number of messages passed at each request, and

make the distinction and accounting of data types.

4.4 Nodes

Due to the architecture of SYNERGY, it is possible to imple-

ment multiple communicating nodes. Each one of those node

has a particular function, and understands certain messages.

When new capabilities are expected, or in a case where some

new tool is developed, one can add a node to the backbone,

and simply define a message flow that will use the new node

to process data from the environment. This approach allows

the system not to be limited by present performance and
tools.

Also, different nodes can be executed on different CPUs, for

peak performance. The resulting latency might become a

problem for certain applications, but in most cases, we are

dealing with asynchronous processes and latency is not a

handicap. If we need to avoid latency, we will try to group

processes that linked tighter synchronism in order to reduce

delays.

Since the system is stateless, it is possible to replace nodes

and interchange them. Also, in some cases, a missing node

will simply remove some extended capability but won't pre-

vent the execution of the experiment. Each node has its own

development curve, and the evolution of the whole is created

by simultaneous evolution of each one of its parts, but isn't

held back by one of them in particular.

In cases where several processes use the same algorithms,

this approach allows to maintain uniqueness of data and

reproducibility of data, since a unique process will deliver

results to any consumer that requires it.

4.4.1. Vehicles

A vehicle can be considered as a node, since it processes

data and broadcasts information about its state to any inter-

ested party within SYNERGY. The different sub-systems of

a vehicle can be implemented as different nodes, each one of

them hanging of the backbone, or as parts of the main pro-

cess. Difference in the implementation have to be deter-
mined from case to case.

4.4.2. Special purpose nodes

Simulators

Simulators are frequent nodes that one might want to imple-

ment on SYNERGY. For example, in the case of a kinemat-

ics simulator: a user, in the environment is controlling an

arm by guiding its end-effector. Depending on whether or
not we want to have the real arm reflect the user's command,

we can direct messages to a simulator or to the real arm.In
the first case, when the simulator receives a vector of

motions in the cartesian space, it translates it into joint veloc-

ities, which are returned the virtual representation of the arm

for update.

In the latter case, the vector would be sent directly to the arm

controller, which then would use the same simulator to gen-
erate joint velocities for the real arm.

Depending on the availability, or the appropriateness of

using the real arm, we have the system behave in two differ-

ent ways, yet it is transparent to the user

NASAAmes- IntelligentMechanismsGroup 8

!
H ommTask

VEVI

Vehicle :

5. Applications

We will shortly present some of the vehicles controlled using
the described architecture. In all those cases, the virtual

equivalent of a real vehicle was updated by telemetry

updates received through SYNERGY.

5.1 MEL

The Mobile Exploration Landrover (MEL) has been under

development since July 1992. The vehicle has two indepen-

dent drive wheels and a variety of sensing devices (differen-

tial GPS, magnetic compass, I.R. sensor, ultrasonic sensors,

stereo pan/tilt cameras, etc.), as well as a wireless Ethernet
for communications with SYNERGY.

Fig. 4: Data flow in SYNERGY with a simulator node.

First, the communication is established between the virtual

representation of an arm and the kinematic model. Then, the
real ann uses the same kbzematic model to reproduce com-

mands sent from the simulation.

Translators

In some cases, it might be necessary to translate data coming

from a node before sending it to another. A translator node
could achieve this, and allow to maintain the current struc-

ture of both the provider and the consumer of data.

Renderer

Some complex computations might be necessary in order to

create better representation of the data. For this purpose, we

have nodes which execute as a task on a separate machine to

create photo-realistic views of the data gathered. Since this is

a time-consuming activities, those nodes are generally
routed to high-performance machines on a remote site.

Fig. 5: MEL in the virtual world,

Fig. 6: The real MEL, with the arm, sensors and a pan/tilt ste-
reo camera.

NASA Ames - Intelligent Mechanisms Group 9

5.2 TROV

At the end of 1993, TROV (Telepresence Remotely Oper-

ated Vehicle) was deployed under the sea ice near McMurdo

Science Station, Antarctica and teleoperated from a control
station located at NASA Ames, California, as well as several

other locations in the country. Antarctica, like Mars, has
remote and hostile locations that are difficult for humans to

explore. The purposes of this mission were to explore below

the surface of McMurdo; conduct a benthic ecology survey;

perform a study of human teleoperation performance and

demonstrate virtual environments based teleoperation tech-

niques [7,8].

5.3 Dante

Dante, a frame walker robot, was sent into Mt Spurt, in

Alaska in July 1994. It was controlled via satellite and Inter-

net connections by a team with representatives from NASA,

Carnegie Mellon, the Alaskan Volcano Observatory, and

other government, university and private organization [10].

Fig. 7: TROV in the virtual world.

Fig. 9: Dante in the virtual environment. Along with informa-
tion about the forces and torques on the limbs and the tether,

terrain maps went scanned using Dante's on-board laser

scanner, and shipped through the lnternet to be displayed in

the virtual world. Based on this information, operators of the

vehicle could take better routing decisions, based on the con-

figuration of the terrain.

Fig. 8: TROV under the ice in the Antarctica Fig. 10." The real Dante on a transition.

m.

NASA Ames - Intelligent Mechanisms Group
10

5.4 Marsokhod

Originally designed in Russia to do inspection on the site of

Tchernobyl, Marsokhod (Mars Walker in russian) is an artic-
ulated 6-wheeled rover. Its excellent capacities on rugged

terrains made it an ideal candidate for future planetary mis-

sions. It is anticipated that one of those rovers will be sent to
Mars sometime around 1998.

5.5 Ranger

Ranger is a free-flying satellite servicing robot. It has two 7-

dof manipulator arms, a camera ann and a grapple arm. This

vehicle is currently developed by the University of Mary-

land, Space Systems Laboratory. We will provide an alter-
nate control interface for the visualization of scientific and

telemetry data, as well as a fully-immersive operator inter-

face using VEVI.

Fig. 11: Marsokhod in VEVI. Terrains created from real
data, as well as texture maps contribute greatly to the realism

of a scene.

Fig. 13: The virtual Ranger in its current development stage.

Fig. 12: The real Marsokhod.

Fig. 14: A view of a rendered image of a fully equipped Rang-

er. Notice the camera arm, and the stowed grappling arm.

NASA Ames - Intelligent Mechanisms Group 11

6. Conclusion

This paper presents an overview of VEVI as well as the com-

plete networking concept SYNERGY. Version 3.0 is cur-

rently under development and more capabilities should be
added to it in the next months.

So far, VEVI 3.0 has reached our expectations. The configu-

ration file approach has permitted rapid prototyping and

implementation of various environments, without showing

any major limitation. Detailed benchmark haven't been per-

formed so far, but a performance loss, which could be

expected because of the extension of generality, hasn't been
yet demonstrated.

Further reference and information, consult our WWW

server: http://maas-neotek.arc.nasa.gov

7. Acknowledgments

This work was partially supported by NASA TROP #233-

02-04, #233-03-03, program manager D. Lavery.

We wish to thank Aaron Kline, UC Berkeley, for his pro-
gramming effort.

8. References

[1] Fong, T.W., "A Computational Architecture for Semi-

autonomous Robotic Vehicles", AIAA Computing in

Aerospace 9 Conference, October 19-21, 1993, San-

Diego, CA.

[2] Simmon, R., Goodwin, R., Fedor, C., Basista, J., "TCA

Task Control Architecture, Programmer's Guide to Ver-
sion 7.3", Carnegie Mellon University, School of Com-

puter Science / Robotics Institute.

[3] Lin, L. Simmons, R., and Fedor, C., "Experience with a
Task Control Architecture for Mobile Robots", CMU-

RI-TR 89-29, Robotics Institute, Carnegie Mellon Uni-
versity, Pittsburg, PA, December 1989.

[4] Fedor, C., "TCX Task Communications", Carnegie Mel-

lon University, School of Computer Science / Robotics
Institute.

[5] Wise, J. D., Ciscon, L., "TelRIP Distributed Applica-

tions Environment Operating Manual", Rice University,
Houston, Texas, 1992. Technical Report 9103.

[6] Pardo-Castellote, G., Schneider, S., "The Network Data

Delivery Service: A Real-Time Data Connectivity Sys-

tem", Proceedings of the International Conference on

Robotics and Automation, IEEE, May 1994.

[7] Hine, B., et al. "The application of Telepresence and
Virtual Reality to subsea exploration", The 2rid Work-

shop on Mobile Robots for Subsea Environments, Proc.

ROV'94, May 1994, Monterey CA.

[8] Stocker, C. et al., "Use of Telepresence and Virtual

Reality in undersea exploration: 1993 Antarctic Telep-
resence experiment, AAAI Workshop on AI Technolo-

gies for Environmental Applications, July 1994, Seattle,
WA.

[9] Fong, T.W., Hine B.E, and Sims, M.H., "Intelligent

Mechanisms Group: Research Summary", NASA Ames

Intelligent Mechanisms Group (IMG) internal docu-

ment, Moffett Field, CA. January 1992.

[10]Wettergreen D., Thorpe, C., Whittaker, W., "Exploring
Mount Erebus by Walking Robot", Robotics and Auton-

omous Systems 11, 1993, pp. 171-185, also in Proceed-

ings of the Third International Conference on Intelligent

Autonomous Systems, February 1993, pp. 72-81.

[11] Denavit, J., Hartenberg, R.S., "A Kinematic Notation
for Lower-Pair Mechanisms Based on Matrices", Jour-

nal of Applied Mechanics, pp. 215-22 I, June 1955

[12]Paul, R.P., "Robot Manipulators, Mathematics, Pro-
gramming and Control", The MIT Press series in artifi-

cial intelligence, 1986.

